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A theoretical model has been developed that discriminates between active and nonactive drugs against HIV-1
with four different mechanisms of action for the active drugs. The model was built up using a probabilistic
neural network (PNN) algorithm and a database of 2720 compounds. The model showed an overall accuracy
of 97.34% in the training series, 85.12% in the selection series, and 84.78% in an external prediction series.
The model not only correctly classified a very heterogeneous series of organic compounds but also
discriminated between very similar active/nonactive chemicals that belong to the same family of compounds.
More specifically, the model recognized 96.02% of nonactive compounds, 94.24% of active compounds
that inhibited reverse transcriptase, 97.24% of protease inhibitors, 97.14% of virus uncoating inhibitors,
and 90.32% of integrase inhibitors. The results indicate that this approach may represent a powerful tool for
modeling large databases in QSAR with applications in medicinal chemistry.

Introduction
Acquired immunodeficiency syndrome (AIDS) is currently

a very serious health problem despite the efforts of researchers
worldwide to unravel the mode of action of the virus and
develop efficient treatments. HIV, the causative agent of AIDS,
has been identified as a retrovirus from theLentiViridae
family.1,2 There are currently different therapeutic targets that
can be used as candidates for drug lead development in this
area. The new drug candidates are intended to act mainly as
target inhibitors, and the most widely studied compounds are
reverse transcriptase inhibitors (T), protease inhibitors (P), virus
uncoating inhibitors (U), and integrase inhibitors (I). In par-
ticular, the compounds that act by mechanisms T and P have
been studied in more depth and can generally be distinguished
as nucleoside RT inhibitors and nonnucleoside RT inhibitors
for group T and peptidic versus nonpeptidic inhibitors for group
P. The number of compounds that has been assayed is so large
that different authors have introduced computer-aided drug
design techniques. In general, there are two important classes
of computer-aided drug design techniques based either on drug-
target interactions driven by molecular forces (Docking)3 or
quantitative structure-activity relationships (QSAR) using
molecular descriptors.4,5

The main steps involved in developing a QSAR model are
(a) selection of the dataset, (b) calculation of molecular
descriptors, (c) fitting the statistical model, and (d) validation
of the model. Numerous different molecular descriptors have
been reported to encode chemical structure in QSAR studies.
Among the most relevant indices or molecular descriptors that
can be used in step b are the 3D, 2D, and 1D descriptors, and
these include the so-called topological6,7 and quantum-chemistry
descriptors.8 Furthermore, there are multiple chemometric
approaches that can in principle be selected for step c.9 Multiple
linear regression (MLR), linear discriminant analysis (LDA),
partial least-squares (PLS), and different kinds of artificial neural
networks (ANN) can be used to relate molecular structure
(represented by molecular descriptors) with biological properties.
The ANNs are particularly useful in QSAR studies in which
the linear models fit poorly due to high data complexity.

There are different kinds of ANNs, and these include
multilayer perceptron (MLP), radial basis functions (RBF), and
PNNsthis ANN is a variant of RBF systems.10,11In particular,
PNN is a type of neural network that uses a kernel-based
approximation to form an estimate of the probability density
functions of classes in a classification problem. PNNs have
different advantages with respect to other ANN, and these
include short training times, the possibility of rapid processing
of large databases, and unnecessary network architecture
optimization. The latter factor is predetermined by the number
of input cases (molecular descriptors), the number of hidden
units (one per compound of the training), and the number of
output categories (number of mechanisms of action plus one to
account for the nonactive drugs group). PNNs are multiple-
category classifiers, i.e., one can model the biological activity
of different compounds by regarding different targets using a
single PNN. On the basis of the considerations outlined above,
1D and 2D descriptors and a PNN algorithm are used here to
achieve the objective of the present work: the introduction for
the first time of a general purpose model that discriminates
between structurally heterogeneous nonactive and active anti-
HIV-1 compounds with different mechanisms of action. This
model could prove to be of major interest in the future in the
mining of large databases to find novel molecular scaffolds with
potential anti-HIV-1 activity and also as an alternative to select
the drug target for drug-target interaction (docking) studies.

Methodology

Database.A large series of 2720 compounds was collected from
the literature. Different types of anti-HIV-1 compounds acting by
different mechanisms of action were included: group T compounds
(HEPT, TIBO, TSAO, nevirapine, pyridinone, nucleosides, and
other derivatives), group P compounds (cyclic urea, peptidic,
cyclopyranones, and penicillin derivatives), group U compounds
(bis-tetraazamacrocyclic derivatives), and group I compounds
(tyrphostins, coumarins, aromatic sulfonamides, chicoric acids,
tetracyclines, curcumins, and others). In addition, group N is
composed of both nonactive compounds that represent of all of
the classes mentioned above as well as very heterogeneous
compounds from different families.

The original database of 2720 compounds was divided into three
different series: a training series of 2369 compounds (774 anti-
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HIV-1 and 1595 nonanti-HIV-1 compounds), a selection or
supervised cross-validation series of 121 compounds (52 anti-HIV-1
and 69 nonanti-HIV-1 compounds), and an external prediction series
of 230 compounds (83 anti-HIV-1 and 147 nonanti-HIV-1 com-
pounds). The training series was used to train the PNN, the selection
series was used to supervise the function of the PNN during training,
and the external prediction series was not used to train the PNN
but was used to validate the predictive power of the model. The
selection series helped to train the network and determined the
training stop point in order to avoid over-fitting problems. Different
EC50 and/or IC50 threshold limits were used to assign a compound
as active in a specific group: EC50 e 0.50 µM is the limit for
group T, IC50 e 0.0150µM in an HIV-PR binding affinity assay
was the limit for group P, EC50 e 0.50µM is the limit for group
U, and 3′-processing IC50 e 3.0 µM was the limit to include a
compound as active in group I. Otherwise, the compounds were
included in group N, i.e., nonanti-HIV-1 compounds. All com-
pounds in group T from the same structural family were evaluated
in the same cellular line, which is specified in the tables in the
Supporting Information. The selection of different threshold limits
for each group was governed by two factors: (a) differentiation
between active and nonactive compounds in terms of reasonable
activity values and (b) the design of series of compounds with a
proportional number of active/nonactive compounds in these series.

Computational Software.All of the molecular structures were
drawn with the software HyperChem, and the structural information
was saved as output coordinate (.hin) files.12 These files were
subsequently used as inputs for software used in the calculation of
the molecular descriptors.

Molecular Descriptors. The software Dragon13 was used to
calculate 1D (functional groups, atom-centered fragments, empirical
descriptors, and properties) and 2D molecular descriptors (topologi-
cal descriptors, molecular walk counts, BCUT descriptors, Galvez
topological charge indices, and 2D autocorrelations) based on the
.hin files generated with HyperChem. Optimization of the geometry
was not necessary due to the nature of these molecular descriptors.
For the sake of simplicity, only the descriptors selected by the PNN
as statistically significant are depicted in Table 1.14

Feature Selection.A genetic algorithm was used to select the
molecular descriptors with the largest influence on the biological
activity.15

PNN Modeling. The neural network was trained using the
algorithm previously implemented in the STATISTICA software
package.15 The kernel-based approach used here for the probability
density function approximation is very similar to radial basis
function networks (RBF) and motivates the probabilistic neural
network (PNN) and generalized regression neural network (GRNN),
both of which were devised by Specht.10,16PNNs are designed for
classification tasks and GRNNs for regression.

There are four layers in the PNN: input, hidden, summation,
and output layers. The hidden or radial units are copied directly
from the training data (one per case). Each unit models a Gaussian
function centered on the training case. There is one output unit per
class. Each unit is connected to all the radial units belonging to its
class, with zero connections from all other radial units. Hence, the
output units simply add up the responses of the units belonging to
their own class. The outputs are each proportional to the kernel-
based estimates of the probability density function for the various

classes, and normalization of these to sum to 1.0 produces estimates
of class probability.

PNN uses a probability density function for each category (drugs
group), and this has the following general formula:

wherefA(x) represents the probability density function for category
A with a vector random variablex, m is the number of training
patterns,p is the number of independent features (descriptors),xAi

is ith training pattern from categoryA and σ is the width of the
Gaussian-shaped kernels. The topology of the neural network
developed in this paper have 8 inputs, 2369 radial units, 5
summation units, and 1 output.

Results and Discussion

The model developed in this study has an overall good
classification percentage of 97.34% in the training series and
85.12% in the selection series (see Table A in the Supporting
Information). A total of 84.78% of the compounds in the
external prediction series are correctly identified by the clas-
sification model (see Table B in the Supporting Information).
The classification function for the prediction group shows
excellent results, and these confirm the quality of the trained
network. Analysis of the classification by category shows that
the model correctly evaluates 94.24% for (T), 97.24% for (P),
97.14% for (U), 90.32% for (I), and 96.02% for (N). Families
of compounds were introduced into the database that have anti-
HIV activity along with others that not present this activity.
Within the different families that do show anti-HIV activity there
are both active and inactive compounds. In this way, information
is introduced into the network with the aim of making the model
capable of optimizing the activity of a given family, and at the
same time, the model could have the predictive capacity to find
new lead compoundssalthough it should be noted that such
predictions are not straightforward. The classification function
evaluated the three series of compounds with a high level of
certainty and is capable of discriminating between compounds
from the same family even when they are structurally very
similar. This ability gives the model the potential to optimize
the anti-HIV activity within a given family of compounds. The
percentages of correct classifications for the different families
of compounds in the external prediction series are shown in
Figure 1.

The model classifies compounds into five categories accord-
ing to the therapeutic target, which enables the model to establish
not only the activity but also the mechanism of action of the
compound. The five categories are the following:

Reverse transcriptase inhibitors (T). The compounds intro-
duced include a series of HEPT derivatives, TSAO analogues,
TIBO derivatives, nevirapine derivatives, pyridinone derivatives,
R-APA derivatives, thiadiazole derivatives, colchicine deriva-
tives, benzophenones, quinolines, and nucleosides. The neural
network gives very good classification percentages for each of
these families of compounds. The correct classification percent-
ages in the training and selection series were 96.43% and
89.66%, respectively. The external prediction series (see Table
B in the Supporting Information) is evaluated in this category
with a level of success of 73.0%. The percentages of good
classification for the different families in category (T) are shown
in the tables in the Supporting Information. The network retains
a level of symmetry in that virtually all of the groups are
evaluated well.

Table 1. Molecular Descriptors Used in the Classification Model and
Their Definitions

descriptors definition

MRa Ghose-Crippen molar refractivity
PSAa fragment-based polar surface area
MLogPa Moriguchi octanol-water partition coeff. (logP)
X3b connectivity index chi-3
X3solb solvation connectivity index chi-3
S0Kb Kier symmetry index
SEIgeb eigenvalue sum from electronegativity weighted distance matrix
VEA1b eigenvector coefficient sum from adjacency matrix

a Properties descriptors.b Topological descriptors.
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Protease inhibitors (P). This group consists of cyclic urea
derivatives, peptide derivatives, pyranones, and penicillin
derivatives. The training and selection series give success levels
of 98.24% and 100%, respectively. The percentage of com-
pounds evaluated correctly in the external prediction series is
86.67%, which clearly demonstrates the predictive power of the
model. The four structural groups that make up this category
are evaluated correctly in all three series.

Virus uncoating inhibitors (U). A series of bis-tetraazamac-
rocyclic compounds was introduced. The levels of correct
classification in the training, selection, and prediction series were
100%, 100%, and 85.71%, respectively.

Integrase inhibitors (I). Tyrphostins, coumarins, aromatic
sulfonamides, chicoric acids, tetracyclines, arylamides, thia-
zolothiazepines, curcumins, salicylhydrazines, styrylquinolines,
and depsides were introduced. The percentages of correct
classification were 95.56% in the training series and 75.0% in
the selection series. The predictions series also showed a good
level of compound classification (77.78%).

Inactive compounds (N). The inactive compounds were
correctly evaluated in all three series: 97.43% in the training
series, 81.16% in the selection series, and 87.76% in the external
prediction series. The neural network proved to be capable of
reliably predicting both the inactive compounds that belong to
active families as well as those from inactive families.

To demonstrate the potential of our model to identify lead
compounds, a new calculation was undertaken in which the
PETT derivatives (Table T15 of the Supporting Information)
were removed from the training and selection series and
introduced into the prediction series. This approach ensures that
the model does not have any information on this active family
of compounds. The model recognized 11 of the active com-
pounds from this structural family and also correctly classified
them into category T. This demonstrates the predictive capability
of our model both in terms of identifying lead compounds and
to classify their mechanism of action.

There are various methods available to validate a given
statistical model. The stability of the model was confirmed by

exchanging a number of compounds from the training series
with compounds chosen at random from the selection series.
The percentages in the training, selection, and external prediction
series remained unchanged, thus demonstrating the consistency
of the network. The results were similar to those described above
and can be seen in Table 2.

The smoothing factor determines the widths of the Gaussian
functions. If the smoothing value is high, then the error in
selection is low and that in training is high. On the other hand,
a low smoothing value favors training but the selection suffers.
A stability study was carried out on the network by varying the
smoothing values in the range 0.01-0.50 (see Figure 2). Values
between 0.01 and 0.10 lead to significantly improved percent-
ages of good classification in the selection and prediction series,
while the level of success for the training series falls slightly.
The optimum smoothing value is between 0.10 and 0.15 in that
good levels of classification are obtained in all three series.
Smoothing values above 0.15 cause a decrease in the classifica-
tion percentages, and the model diverges from the optimum
smoothing value.

Receiver Operating Characteristic (ROC) curves for the
training, selection, and predicting series were also produced by
varying the a priori probabilities from 0.9 to 0.1 using Origin
software.17 This type of curve differentiates between two
categories, and for this reason, the active compounds with
different mechanisms of action were combined into a single
category. The area under the curve is 0.995 for the training
series, 0.874 for the selection series, and 0.893 for the external
prediction series. These results confirm that the developed model
is not a random classifier on the basis that the area values are
significantly higher than 0.5 (see Figure 3).

Finally, the results obtained with PNN were compared with
those obtained using another type of neural network (multilayer
perceptron, MLP) and by linear discriminant analysis (LDA).
The percentages of good classification for the different catego-

Figure 1. Graph depicting the percentages of good classification for
the external predicting series. Reverse transcriptase inhibitors (A)
HEPTs; B) TSAOs; C) nevirapine analogues; D) pyridinones; E
) thiadiazoles, benzophenones; F) colchicine, PETTs; G) TIBOs;
H ) nucleosides; I) thiocarboxanilide analogues). Protease inhibitors
(J ) cyclic ureas; K) pyranones; L) peptides; M) penicillin
analogues). Uncoating inhibitors (N) bis-tetraazamacrocycles). Inte-
grase inhibitors (O) coumarins, styrylquinolines, curcumins; P)
salicylhydrazines, cinnamoyl-based, sulfonamides, chicoric acids; Q)
thiazolothiazepines, depsides, tyrphostins, arylamides). Nonactive
families (R).

Table 2. Description of the Models Found with Different Selection
Series

% training % selection % prediction

model 1a 97.34 85.12 84.78
model 2 95.27 81.82 85.65
model 3 97.38 85.65 79.34
model 4 98.14 81.82 85.21
model 5 97.26 86.00 83.47

a Model described in this paper.

Figure 2. Effect of varying the smoothing value on the classification
percentages in the training, selection, and prediction series.
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ries are far higher in the case of PNN (see Table 3). In addition,
this finding confirms that it was necessary to model this database
using a technique that would allow us to establish a nonlinear
model with the capability of learning (e.g., PNN).

Conclusion

The study described here concerned a very complex database
and enabled the differentiation between compounds with anti-
HIV activity and those without. The database contained both
active and inactive compounds from families that inhibit the
virus as well as a series of inactive compounds. The compounds
had a wide range of different structures. It was not possible to

develop a linear model, but it was found that nonlinear models
established with techniques such as neural networks have a good
predictive capacity. This finding is important when dealing with
large databases that are difficult to adjust with linear models.

The use of PNN also led to a study aimed at predicting the
mode of action of the different inhibitorssan approach that will
aid the selection process for biological assays required to verify
the activity of a given compound.

The approach described here could represent a powerful tool
in the design of novel pharmacological agents and allow the
analysis of large databases to identify new compounds with
potent activity.
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